使用CoAtNet對(duì)植物幼苗進(jìn)行分類(pytorch)
雖然Transformer在CV任務(wù)上有非常強(qiáng)的學(xué)習(xí)建模能力,但是由于缺少了像CNN那樣的歸納偏置,所以相比于CNN,Transformer的泛化能力就比較差。因此,如果只有Transformer進(jìn)行全局信息的建模,在沒有預(yù)訓(xùn)練(JFT-300M)的情況下,Transformer在性能上很難超過CNN(VOLO在沒有預(yù)訓(xùn)練的情況下,一定程度上也是因?yàn)閂OLO的Outlook Attention對(duì)特征信息進(jìn)行了局部感知,相當(dāng)于引入了歸納偏置)。既然CNN有更強(qiáng)的泛化能力,Transformer具有更強(qiáng)的學(xué)習(xí)能力,那么,為什么不能將Transformer和CNN進(jìn)行一個(gè)結(jié)合呢?
谷歌的最新模型CoAtNet做了卷積 + Transformer的融合,在ImageNet-1K數(shù)據(jù)集上取得88.56%的成績。今天我們就用CoAtNet實(shí)現(xiàn)植物幼苗的分類。
論文:https://arxiv.org/pdf/2106.04803v2.pdf
github復(fù)現(xiàn):GitHub - chinhsuanwu/coatnet-pytorch: A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".
項(xiàng)目結(jié)構(gòu)
CoAtNet_demo │
├─data │ └─train
│ ├─Black-grass │ ├─Charlock
│ ├─Cleavers
│ ├─Common Chickweed
│ ├─Common wheat
│ ├─Fat Hen
│ ├─Loose Silky-bent │ ├─Maize
│ ├─Scentless Mayweed
│ ├─Shepherds Purse
│ ├─Small-flowered Cranesbill
│ └─Sugar beet ├─dataset
│ └─dataset.py
└─models
│ └─coatnet.py
│
└─train.py
│
└─test.py
數(shù)據(jù)集
數(shù)據(jù)集選用植物幼苗分類,總共12類。數(shù)據(jù)集連接如下:
鏈接:https://pan.baidu.com/s/1gYb-3XCZBhBoEFyj6d_kdw
提取碼:q060
在工程的根目錄新建data文件夾,獲取數(shù)據(jù)集后,將trian和test解壓放到data文件夾下面,如下圖:
安裝庫,并導(dǎo)入需要的庫
安裝完成后,導(dǎo)入到項(xiàng)目中。
import torch.optim as optim import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variable
from models.coatnet import coatnet_0
設(shè)置全局參數(shù)
設(shè)置使用GPU,設(shè)置學(xué)習(xí)率、BatchSize、epoch等參數(shù)
# 設(shè)置全局參數(shù) modellr = 1e-4 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
數(shù)據(jù)預(yù)處理
數(shù)據(jù)處理比較簡單,沒有做復(fù)雜的嘗試,有興趣的可以加入一些處理。
# 數(shù)據(jù)預(yù)處理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
數(shù)據(jù)讀取
然后我們?cè)赿ataset文件夾下面新建 init.py和dataset.py,在mydatasets.py文件夾寫入下面的代碼:
說一下代碼的核心邏輯。
第一步 建立字典,定義類別對(duì)應(yīng)的ID,用數(shù)字代替類別。
第二步 在__init__里面編寫獲取圖片路徑的方法。測試集只有一層路徑直接讀取,訓(xùn)練集在train文件夾下面是類別文件夾,先獲取到類別,再獲取到具體的圖片路徑。然后使用sklearn中切分?jǐn)?shù)據(jù)集的方法,按照7:3的比例切分訓(xùn)練集和驗(yàn)證集。
第三步 在__getitem__方法中定義讀取單個(gè)圖片和類別的方法,由于圖像中有位深度32位的,所以我在讀取圖像的時(shí)候做了轉(zhuǎn)換。
代碼如下:
# coding:utf8 import os from PIL import Image from torch.utils import data from torchvision import transforms as T from sklearn.model_selection import train_test_split
Labels = {'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11} class SeedlingData (data.Dataset): def __init__(self, root, transforms=None, train=True, test=False): """
主要目標(biāo): 獲取所有圖片的地址,并根據(jù)訓(xùn)練,驗(yàn)證,測試劃分?jǐn)?shù)據(jù)
""" self.test = test
self.transforms = transforms if self.test:
imgs = [os.path.join(root, img) for img in os.listdir(root)]
self.imgs = imgs else:
imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]
imgs = [] for imglable in imgs_labels: for imgname in os.listdir(imglable):
imgpath = os.path.join(imglable, imgname)
imgs.append(imgpath)
trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42) if train:
self.imgs = trainval_files else:
self.imgs = val_files def __getitem__(self, index): """
一次返回一張圖片的數(shù)據(jù)
""" img_path = self.imgs[index]
img_path=img_path.replace("\\",'/') if self.test:
label = -1 else:
labelname = img_path.split('/')[-2]
label = Labels[labelname]
data = Image.open(img_path).convert('RGB')
data = self.transforms(data) return data, label def __len__(self): return len(self.imgs)
然后我們?cè)趖rain.py調(diào)用SeedlingData讀取數(shù)據(jù) ,記著導(dǎo)入剛才寫的dataset.py(from mydatasets import SeedlingData)
# 讀取數(shù)據(jù) dataset_train = SeedlingData('data/train', transforms=transform, train=True)
dataset_test = SeedlingData("data/train", transforms=transform_test, train=False) # 導(dǎo)入數(shù)據(jù) train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
設(shè)置模型
- 設(shè)置loss函數(shù)為nn.CrossEntropyLoss()。
- 設(shè)置模型為coatnet_0,修改最后一層全連接輸出改為12。
- 優(yōu)化器設(shè)置為adam。
- 學(xué)習(xí)率調(diào)整策略改為余弦退火
# 實(shí)例化模型并且移動(dòng)到GPU criterion = nn.CrossEntropyLoss()
model_ft = coatnet_0()
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 12)
model_ft.to(DEVICE) # 選擇簡單暴力的Adam優(yōu)化器,學(xué)習(xí)率調(diào)低 optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)
# 定義訓(xùn)練過程 def train(model, device, train_loader, optimizer, epoch):
model.train()
sum_loss = 0 total_num = len(train_loader.dataset)
print(total_num, len(train_loader))
for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data).to(device), Variable(target).to(device) output = model(data) loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print_loss = loss.data.item() sum_loss += print_loss if (batch_idx + 1) % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item()))
ave_loss = sum_loss / len(train_loader)
print('epoch:{},loss:{}'.format(epoch, ave_loss)) # 驗(yàn)證過程 def val(model, device, test_loader):
model.eval()
test_loss = 0 correct = 0 total_num = len(test_loader.dataset)
print(total_num, len(test_loader))
with torch.no_grad():
for data, target in test_loader: data, target = Variable(data).to(device), Variable(target).to(device) output = model(data) loss = criterion(output, target)
_, pred = torch.max(output.data, 1) correct += torch.sum(pred == target)
print_loss = loss.data.item() test_loss += print_loss
correct = correct.data.item() acc = correct / total_num
avgloss = test_loss / len(test_loader)
print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
avgloss, correct, len(test_loader.dataset), 100 * acc)) # 訓(xùn)練 for epoch in range(1, EPOCHS + 1):
train(model_ft, DEVICE, train_loader, optimizer, epoch)
cosine_schedule.step()
val(model_ft, DEVICE, test_loader) torch.save(model_ft, 'model.pth')
測試
測試集存放的目錄如下圖:
第一步 定義類別,這個(gè)類別的順序和訓(xùn)練時(shí)的類別順序?qū)?yīng),一定不要改變順序?。。?!
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed', 'Common wheat', 'Fat Hen', 'Loose Silky-bent', 'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
第二步 定義transforms,transforms和驗(yàn)證集的transforms一樣即可,別做數(shù)據(jù)增強(qiáng)。
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
第三步 加載model,并將模型放在DEVICE里。
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torch.load("model.pth") model.eval() model.to(DEVICE)
第四步 讀取圖片并預(yù)測圖片的類別,在這里注意,讀取圖片用PIL庫的Image。不要用cv2,transforms不支持。
path = 'data/test/' testList = os.listdir(path) for file in testList:
img = Image.open(path + file)
img = transform_test(img)
img.unsqueeze_(0)
img = Variable(img).to(DEVICE)
out = model(img) # Predict _, pred = torch.max(out.data, 1)
print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))
測試完整代碼:
import torch.utils.data.distributed import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable import os
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed', 'Common wheat', 'Fat Hen', 'Loose Silky-bent', 'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE) path = 'data/test/' testList = os.listdir(path) for file in testList:
img = Image.open(path + file)
img = transform_test(img)
img.unsqueeze_(0)
img = Variable(img).to(DEVICE)
out = model(img)
# Predict
_, pred = torch.max(out.data, 1)
print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))
運(yùn)行結(jié)果: